Some aspects of hypersonic flow over power law bodies

نویسنده

  • H. G. HORNUNG
چکیده

This study concerns the hypersonic flow over blunt bodies in two specific cases. The first is the case when the Mach number is infinite and the ratio of the specific heats approaches one. This is sometimes referred to as the ‘Newtonian limit’. The second is the case of infinite Mach number and very large streamwise distance from the blunt nose with a strong shock wave, or the ‘blast wave limit ’. In both cases attention is restricted to power law bodies. Experiments are described of such flows at Ma = 7.55 in air. The Newtonian flow over bodies of the shape y cc 2” at zero incidence is shown to be divisible into three regions: the attached layer at small 2, the free layer and the blast wave region. As m increases from zero, the free-layer region reduces in extent until it disappears at m = 1/(2 + j ) (j = 1 and 0 for axisymmetric and plane flow respectively). A difficulty arises in a transition solution of the type given by Freeman (19623) connecting the free layer with the blast wave result. At m > 2/(3+j) the attached layer merges smoothly into the Lees-Kubota solution which replaces the blast-wave result in this range. In the blast wave limit, solutions were obtained for flow over axisymmetric power law shapes in the range 1/27 < m < +. Second-order results taking account of the body shape are given. These solutions are compared with experimental results obtained in air at a free stream Mach number of 7.55 and stagnation temperature of 630 OK, as well as with numerical solutions at Mach number of 100. The numerical method is tested by comparing solutions corresponding to the experimental conditions with experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

Approximate Viscous Shock-Layer Analysis of Axisymmetric Bodies in Perfect Gas Hypersonic Flow

In this paper, an approximate axisymmetric method is developed which can reliably calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s second-order pressure expression is used instead of the normal momentum equation. The combination of Maslen’s second-order pressure expression and viscous shock layer equations is developed to accurately and efficiently com...

متن کامل

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general...

متن کامل

Development of an Upwind Algorithm at Subsonic Regions in the Solution of PNS Equations

In this paper an upwind algorithm based on Roe’s scheme is presented for solution of PNS equations. Non iterative-implicit method using finite volume technique is used. The main advantage of this approach, in comparison with similar upwind methods, is reduction of oscillations around sonic line. This advantage causes the present method to be able to analyze supersonic flows with free stream Mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005